1.
Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
x + y + x - y = -3 - 1
2x = -4
x = -2
Подставляем в первое.
-2 + y = -3
y = - 1
x = -2; y = -1
Все. Если будут во пиши.
p.s. Отметь, как лучший, если не сложно ;)
Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7
Объяснение:
Решить систему уравнений:
ху-2у-4х= -5
у-3х= -2
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у= -2+3х
х(-2+3х)-2(-2+3х)-4х= -5
-2х+3х²+4-6х-4х= -5
Приведём подобные члены:
3х²-12х+9=0, квадратное уравнение, ищем корни:
х₁,₂=(12±√144-108)/6
х₁,₂=(12±√36)/6
х₁,₂=(12±6)/6
х₁=6/6
х₁=1
х₂=18/6
х₂=3
у= -2+3х
у₁= -2+3*1
у₁=1
у₂= -2+3*3
у₂=7
Решение системы уравнений х₁=1 х₂=3
у₁=1 у₂=7