D(y)=[-2;+∞)- область определения данной функции. Cоставим уравнение касательной к кривой в точке z y(z)=√(z+2); y`(x)=1/2√(x+2) y`(z)=1/2√(z+2) Уравнение у-у(z)=y`(z)(x-z) y-√(z+2)=(x-z)/2√(z+2) Найдем точки пересечения касательной с осями координат При х=0 у=√(z+2)-(z/2√(z+2))=(2z+4-z)/2√(z+2)=(z+4)/2√(z+2) При у=0 x-z=-2(z+2) ⇒x=-z-4 Треугольник, образуемый касательной с осями координат- прямоугольный, с катетами |-z-4| и |(z+4)/2√(z+2)| Площадь прямоугольного треугольника находим по формуле как половину произведения катетов: S(Δ)=(1/2)|-z-4|·(z+4)/2√(z+2)=(z+4)²/4√(z+2) S`(z)=2(z+4)(3z+4)/16(z+2)√(z+2) S`(z)=0 3z+4=0 z=-4/3 y(-4/3)=√((-4/3)+2)=1/√3 О т в е т.(-4/3; 1/√3)
x+20y+10xy=40
x+20y-10xy=-8
x+20y+10xy=40
(x+20y+10xy)-(x+20y-10xy)=40-(-8)
x+20y+10xy=40
x+20y+10xy-x-20y+10xy=40+8
x+20y+10xy=40
20xy=48
x+20y+10xy=40
xy=2.4
x+20y+24=40
xy=2.4
x+20y=16
y=2.4/x
x+20*2.4/x=16
y=2.4/x
x+48/x=16
y=2.4/x
(x+48/x)*x=16*x
y=2.4/x
x^2+48=16x
y=2.4/x
x^2-16x+48=0
y=2.4/x
(x-4)(x-12)=0
y=2.4/x
x1=4
x2=12
y1=2.4/4=0.6
y2=2.4/12=0.2
Проверка:
x1=4
y1=2.4/4=0.6
x+20y+10xy=40
4+20*0.6+10*4*0.6=40
4+12+24=40
40=40
x+20y-10xy=-8
4+20*0.6-10*4*0.6=-8
4+12-24=-8
-8=-8
x2=12
y2=2.4/12=0.2
x+20y+10xy=40
12+20*0.2+10*12*0.2=40
12+4+24=40
40=40
x+20y-10xy=-8
12+4-24=-8
-8=-8