Два велосипедисти виїхали одночасно з двох сіл, від- стань між якими становить 9 км, і зустрілися через 0,5 год. Визначте швидкість руху кожного, якщо швид- кість першого велосипедиста на 1,6 км/год більша.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю