М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NastysikRicci
NastysikRicci
31.08.2022 01:56 •  Алгебра

3.Первая труба пропускает на 16 л воды в минуту меньше, чем вторая труба. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 105 литров она заполняет на 4 мин дольше, чем вторая труба?
4. Первые 500 км автомобиль ехал со скоростью 100 км/ч, а следующие 100 км со скоростью 50 км/ч, а последние 165 – со скоростью 55 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.

👇
Открыть все ответы
Ответ:
FROST22223333
FROST22223333
31.08.2022

ответ: для начала нам надо найти точки экстремума. для этого найдем производную и приравняем её к 0. получаем -3х^3-2х+5 =0. получаем корни и запоминаем их. далее нам надо найти интеграл от этой производной. поскольку нам крупно повезло мы получаем функцию аналогичную начальной. подставляя числа в промежутке от -5 до 2 получаем такой график функции, при этом, не забываем про производную которую мы находили и проверяем попали ли высоты в значения производной по оси Х, потом подставляем производную в начальное уравнение и получаем значения по У. подставляем эти значения в оси и получаем места перегиба графика. у нас всё получилось


Постройте график функции y= -x^3-x^2+5x
4,5(70 оценок)
Ответ:
pashkevich00
pashkevich00
31.08.2022

Два натуральных числа 16; 24.

Объяснение:

Найти два натуральных числа по заданным условиям.

Пусть первое число равно x, а второе равно y.

Тогда сумма их квадратов: x² + y² = 832,

а их произведение xy = 384.

Чтобы найти эти числа, решим систему уравнений.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 . \end{cases}

Умножим обе части второго уравнения системы на 2.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 \;\;|\cdot 2 \end{cases}; \;\;\; \; \displaystyle \begin{cases} x^2 + y^2 = 832 \\ 2xy=768 \end{cases}

Сложим оба уравнения системы:

\displaystyle +\begin{cases}x^2 + y^2 = 832\\2xy=768 \end{cases} \\\displaystyle \overline{x^2 +2xy+ y^2 = 1600}

Свернем левую часть уравнения по формуле квадрата суммы двух выражений:  

\displaystyle (x+y)^2 = 40^{2}

Получим следующую систему уравнений:

\displaystyle \begin{cases} (x+y)^2 = 40^{2} \\ xy=384 \end{cases}

Извлечем квадратный корень из обеих частей первого уравнения.

С учетом того, что нам даны натуральные числа, получим следующую систему уравнений:

\displaystyle \begin{cases} x+y = 40 \\ xy=384 \end{cases}

Выразим переменную y через x в первом уравнении и подставим полученное выражение во второе уравнение.

\displaystyle \begin{cases} y = 40 -x\\ x(40-x)=384 \end{cases};

\displaystyle \begin{cases} y = 40 -x\\ 40x -x^2=384 \end{cases}

Решим второе уравнение системы.

\displaystyle x^2 -40x +384 = 0;\\\displaystyle D = b^{2} - 4ac \\D= 40^{2} -4\cdot 40 \cdot 384 =1600-1536=64=8^2;\\\\\displaystyle x_{1,2} =\frac{-b\pm\sqrt{D} }{2a};\\\displaystyle x_{1} =\frac{40-8}{2}=16;\\\displaystyle x_{2} =\frac{40+8}{2}=24.

Тогда

\displaystyle \begin{cases} x_{1}=16\\y_{1} = 40-16 \end{cases};\;\;\;\displaystyle \begin{cases} x_{1}=16\\y_{1} = 24 \end{cases};\\\\\displaystyle \begin{cases} x_{2}=24\\y_{2} = 40-24 \end{cases};\;\;\;\displaystyle \begin{cases} x_{2}=24\\y_{2}=16 \end{cases}

Заданные натуральные числа 16 и 24.

4,7(79 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ