График функции y=3/x - гипербола, расположена в первой и третьей четвертях. Точки для построения :
x = 1/2; y = 3/(1/2) = 6; A(1/2; 6)
x = -1/2; y = 3/(-1/2) = -6; A'(-1/2; -6)
x = 1; y = 3/1 = 3; B(1; 3)
x = -1; y = 3/(-1) = -3; B'(-1; -3)
x = 2; y = 3/2 = 1,5; C(2; 1,5)
x = -2; y = 3/(-2) = -1,5; C'(-2; -1,5)
x = 3; y = 3/3 = 1; D(3; 1)
x = -3; y = 3/(-3) = -1; D'(-3; -1)
Область определения функции D(y) = (-∞; 0)∪(0; +∞)
Область значений функции E(y) = (-∞; 0)∪(0; +∞)
Функция убывает на всей области определения D(y) = (-∞; 0)∪(0; +∞)
Промежутки знакопостоянства :
y > 0 при x ∈ (0; +∞)
y < 0 при x ∈ (-∞; 0)
Функция нулей не имеет, пересечений с осью OY тоже.
Функция нечетная : y(-x) = 3/(-x) = -3/x = -y(x)
Функция не периодичная.
Функция имеет две асимптоты :
горизонтальную y=0 и вертикальную x=0
Перечислены все случаи пересечения, на выбор.
Объяснение:
№1 пересекает №№2,3,4,5,7,8, параллельна 6 и 9.
№2 пересекает №№1,3,4,5,6,7,8,9.
№3 пересекает №№1,2,4,5,6,7,8,9.
№4 пересекает №№1,2,3,5,6,7,8,9.
№5 пересекает №№1,2,3,4,6,7,8,9.
№6 пересекает №№2,3,4,5,7,8, параллельна 1 и 9.
№7 пересекает №№1,2,3,4,5,6,8,9.
№8 пересекает №№1,2,3,4,5,6,7,9.
№9 пересекает №№2,3,4,5,7,8, параллельна 1 и 6.
Заключение: графики линейных функций, коэффициент k которых (при х) одинаковый, параллельны.
1) y = -2x-1 2 6)y= -2x-3,5 9)y= -2x+5
ответ:при 0<y<5
Объяснение:
См фото