№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)
Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)