Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
Существует следующее утверждение: если рациональное уравнение с целочисленными коэффициентами имеет хотя бы один целый корень, то искать его стоит только среди делителей свободного члена. Свободный член здесь: -33. Значит, претенденты на один из корней такие: +-1;+-2;+-11;+-33 - делители -33. Просто проверяем подстановкой каждое из этих чисел. В конечном итоге получаем, что 3 - корень уравнения. Один корень мы подобрали. Чтобы найти другие корни, можно использовать разные методы: можно использовать схему Горнера или поделим уголков на x - a, где a - подобранный корень, у нас это 3. Делим уголком уравнение на x-3. Можно по схеме Горнера подобрать коэффициенты квадратного уравнения. Так или иначе мы получаем, что x^3 + 2x - 33 = (x-3)(x^2 + 3x + 11) Теперь осталось лишь найти корни уравнения x^2 + 3x + 11 = 0: D = 9 - 44 < 0 - корней нет Значит, x = 3 - единственный корень исходного уравнения
3х-у=5
3х-(2х-3)=5
3х-2х+3=5
х=5-3
х=2
у=2*2- 3 =4 - 3= 1