Любое выражение, умноженное на 0, равна 0.
При делении любого выражения на 0 получается неопределенное выражение
Объяснение:
Запишем деление единицы на ноль:
a = 1/0
Отсюда:
a • 0 = 1
Нужно найти такое a, которое при умножении на ноль дает единицу. Таких чисел просто нет. Так как произведение равно нулю, когда один из множителей равен нулю, получаем:
0 = 1
Но ноль не равен единице, поэтому запись 0 = 1 неверна, а запись a = 1/0 не имеет смысла (решений) при любом a. А если разделить ноль на ноль? Запишем:
a = 0/0
a • 0 = 0
Уравнение имеет смысл при любых значениях a, так как умножая 0 на a получаем:
0 = 0
f(x)=x²-3x+2
Найдём нули функции:
х²-3х+2=0
х²-х-2х+2=0
х(х-1)-2(х-1)=0
(х-2)(х-1)=0
х-2=0 => x=2
x-1=0 => x=1
Точки пересечения параболы с осью Х: (1;0) и (2;0)
Найдем вершину параболы по формуле x=-b/2a: a=1; b=-3: x=3/2*1=1.5
y=1.5²-3*1.5+2
y=-0.25
Координаты вершины параболы: (1.5;-0.25)
Все. Параболу можно построить по этим 3-м точкам: (1;0), (1.5;-0.25) и (2;0).
Чтобы график был точнее, можно найти еще несколько точек, подставляя различные значения х в уравнение параболы.
Таблица и график во вложении