М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
190520041
190520041
02.01.2023 13:58 •  Алгебра

У два этих выражения Буду неимоверно благодарен.

👇
Ответ:
clever113
clever113
02.01.2023

если непонятно можешь скачать приложение photomath


У два этих выражения Буду неимоверно благодарен.
У два этих выражения Буду неимоверно благодарен.
У два этих выражения Буду неимоверно благодарен.
4,4(22 оценок)
Открыть все ответы
Ответ:
EcLIpsЕ
EcLIpsЕ
02.01.2023

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:

P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:

P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие

A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).

Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где

A1=A1= (Выбраны 2 белых шара),

4,6(78 оценок)
Ответ:
student136
student136
02.01.2023

На 1 месте может быть любая цифра от 1 до 9, то есть 9 вариантов.

Н 2, 3, 4 и 5 месте - любая от 0 до 9, то есть по 10 вариантов.

Всего 9*10*10*10*10 = 90 000 вариантов.

а) Все цифры разные. На 1 месте может быть любая цифра от 1 до 9 - 9 вариантов.

На 2 месте может быть 0 и любая из 8 других цифр, но не та, которая на 1 месте. - 9 вариантов.

На 3 месте может быть любая из 8 оставшихся цифр. На 4 - любая из 7, на 5 - любая из 6.

Всего 9*9*8*7*6 = 27216 вариантов. Вероятность равна 27216/90 000 = 0,3024

б) Все цифры одинаковые - таких вариантов всего 9, от 11111 до 99999. Вер-сть 1/10 000 = 0,0001

в) Все цифры нечетные На каждом месте может быть одна из 5 цифр - 1,3,5,7,9.

Всего 5*5*5*5*5 = 3125 вариантов. Вероятность равна 3125/90 000 = 0,03472

2)Из обеих урн достают по одному шару.

Какова вероятность, что они будут одного цвета?

5/24*10/24 + 11/24*8/24 + 8/24*6*24 = 31/96 = 32.3%

ответ : 32.3%

3) ПО ОПРЕДЕЛЕНИЮ вероятность это отношение числа нужных вариантов к общему числу вариантов (какого-то события). То есть 2*9!/10! = 1/5;

4)Где-то 50 процентов

Дальше я хз

Объяснение:

4,5(81 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ