Решаем в м и сек.
10 мин. = 600 сек. Вверх по реке - это против течения.
Скорость первого катера против течения:
9 - 1 = 8 м/с, а второго 7- 1 = 6 м/с.
Пусть весь путь равен S, тогда S/6 - S/8 = 600
4S/24 - 3S/24 = 600;
S/24 = 600;
S = 600 · 24 = 14400 метров
Вниз по течению скорость первого катера:
9 + 1 = 10 м/с.
Он проплыл 14400 метров за 14400/10 = 1440 сек
Скорость второго по течению 7 + 1 = 8 м/с.
Он проплыл 14400м за 14400/8 = 1800 сек
1800 - 1440 = 360 сек = 360/60 = 6 минут
ответ: на 6 минут
___ Вроде бы так, если не ошибаюсь.
1.D(F)=[0;+∞)
1.Е(F)=[0;+∞)
3. Нули функции x-√x=0; √х*(√x-1)=0; x=0 ;x=1.
4. Промежутки знакопостоянства при х ∈(0;1) F(x)<0; при х ∈(1;+∞) F(x)>0
5. Функция непериодическая.
6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.
7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.
8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.
9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4
10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.
График функции см. ниже.