Матема́тика (др.-греч. μᾰθημᾰτικά[1] < μάθημα «изучение; наука») — точная (формальная) наука, первоначально исследовавшая количественные отношения и пространственные формы[2]; более современное понимание: это наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории[3].
Математика исторически сложилась на основе операций подсчёта, измерения и описания формы объектов[4]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке.
Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
Матема́тика (др.-греч. μᾰθημᾰτικά[1] < μάθημα «изучение; наука») — точная (формальная) наука, первоначально исследовавшая количественные отношения и пространственные формы[2]; более современное понимание: это наука об отношениях между объектами, о которых ничего не известно, кроме описывающих их некоторых свойств, — именно тех, которые в качестве аксиом положены в основание той или иной математической теории[3].
Математика исторически сложилась на основе операций подсчёта, измерения и описания формы объектов[4]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке.