ответ: х км/ч - скорость течения
х+11 км/ч - скорость лодки по течению
11-х км/ч - скорость лодки против течения
112/(х+11) ч - время, затраченное лодкой на путь по течению
112/(11-х) ч - время, затраченное лодкой на путь против течения
т.к. время, затраченное на путь по течению, на 6 часов меньше, составляем уравнение
112/(х+11)+6=112/(11-х) *(х+11)(11-х)
112(11-х)+6(11-х)(11+х)=112(11+х)
1232-112х+726-6х^2=1232+112x
6x^2+224x-726=0 :2
3x^2+112x-363=0
D=12544+4356=16900
x1=-121/3 - не подходит
x2=3 км/ч
ответ скорость течения 3 км/ч
≤0
(x-2)
решим методом интервалов
значения х обращающие числитель и знаменатель в 0
это х={-4, 0, 2}
рассмотрим знак выражения при х принадлежащих интервалам
1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак -
2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак +
3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак -
4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак +
выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим
х∈ (-∞;-4]U[0;2)