Пусть х учеников изучают только английский, у - только французский и z - и английский, и французски. Получаем, что ангийский изучают (х+z) учеников, а французский (y+z). Получаем систему из двух уравнений с тремя неизвестными. (x+z)/5=z (y+z)/7=z Отуда получаем x+z=5z y+z=7z
x=4z y=6z Всего в классе учеников x+y+z=4z+6z+z=11z z - натуральное число Так как в классе занято более 30 мест, то 11z>30 Так как в классе 20 двухместных парт, то 11z≤40 Получаем 30 <11z≤40 30/11 < z≤ 40/11 2,7 < z ≤ 3,6 z=3 В классе 33 ученика, 12 из них изучают только английский, 18 -только французский и 3 изучают оба языка
Пусть х учеников изучают только английский, у - только французский и z - и английский, и французски. Получаем, что ангийский изучают (х+z) учеников, а французский (y+z). Получаем систему из двух уравнений с тремя неизвестными. (x+z)/5=z (y+z)/7=z Отуда получаем x+z=5z y+z=7z
x=4z y=6z Всего в классе учеников x+y+z=4z+6z+z=11z z - натуральное число Так как в классе занято более 30 мест, то 11z>30 Так как в классе 20 двухместных парт, то 11z≤40 Получаем 30 <11z≤40 30/11 < z≤ 40/11 2,7 < z ≤ 3,6 z=3 В классе 33 ученика, 12 из них изучают только английский, 18 -только французский и 3 изучают оба языка
(-2; -4); (-2; 1); (3; -4); (3; 1)
Объяснение:
xy+x=6
xy+y=4 (умножим на -1)
xy+x=6
-xy-y=-4
х-у=2; х=у+2
у(у+2)+у+2=6
х=у+2
у²+2у+у+2-6=0
х=у+2
у²+3у-4=0
х=у+2
По теореме Виета
у=-4; у=1
х=-4+2=-2; х=1+2=3
ответ: (-2; -4); (-2; 1); (3; -4); (3; 1)