Ну смотри. Давай представим первое из неизвестных чисел как х. Поскольку они последовательные, т.е. идут друг за другом, значит одно из них больше другого на единицу, значит его можно представить как х+1. Далее нам известно, что произведение двух этих чисел на 271 больше их суммы. Говоря математическим языком х(х+1)-271=х+х+1. Почему здесь не сумма, а вычитание? Т.к. говорится что произведение больше, чем сумма, следовательно если вычесть из произведения 271 получится их сумма. А далее идет простое уравнение.
Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2. Отсюда Площадь равна (1/2)c·(c/2)=c^2/4. В нашем случае c=13, S_(max)=169/4=42,25. Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,
Примите мои соболезнования в связи с кончиной задачи