Решение.
1) (x - c)*(x - d) = x² + (c - d)x + cd
x² - xd - cx + cd = x² + cx - xd + cd
x² - xd - cx + cd - x² - cx + xd - cd = 0 ⇔ переменные не взаимоуничтожаются до конца ⇔ -2cx ≠ 0 - не является тождеством
2) (x - e)*(x + d) = x² - (e - d)x - ed
x² + xd - ex - ed = x² - ex + xd - ed
x² + xd - ex - ed - x² + ex - xd + ed = 0 ⇔ переменные взаимоуничтожаются ⇔ 0 = 0 - является тождеством
3) 12x² + y² - (8x² - 5y² - (-10x² + (5x² - 6y²))) = -x²
12x² + y² - 8x² + 5y² + 10x² + 5x² - 6y² = -x² ⇔ переменные не взаимоуничтожаются до конца ⇔ 20x² ≠ 0 - не является тождеством
4) 3a - (2a - (6a - (c - b) + c + (a + 8b) - 6c)) = 10a + 9b - 8c
3a - 2a + 6a + c + b + c + a + 8b - 6c = 10a + 9b - 8c
8а - 4с + 9b ≠ 10a + 9b - 8c - не является тождеством
ответ: равенство 2 - тождество.
Решение.
1) (x - c)*(x - d) = x² + (c - d)x + cd
x² - xd - cx + cd = x² + cx - xd + cd
x² - xd - cx + cd - x² - cx + xd - cd = 0 ⇔ переменные не взаимоуничтожаются до конца ⇔ -2cx ≠ 0 - не является тождеством
2) (x - e)*(x + d) = x² - (e - d)x - ed
x² + xd - ex - ed = x² - ex + xd - ed
x² + xd - ex - ed - x² + ex - xd + ed = 0 ⇔ переменные взаимоуничтожаются ⇔ 0 = 0 - является тождеством
3) 12x² + y² - (8x² - 5y² - (-10x² + (5x² - 6y²))) = -x²
12x² + y² - 8x² + 5y² + 10x² + 5x² - 6y² = -x² ⇔ переменные не взаимоуничтожаются до конца ⇔ 20x² ≠ 0 - не является тождеством
4) 3a - (2a - (6a - (c - b) + c + (a + 8b) - 6c)) = 10a + 9b - 8c
3a - 2a + 6a + c + b + c + a + 8b - 6c = 10a + 9b - 8c
8а - 4с + 9b ≠ 10a + 9b - 8c - не является тождеством
ответ: равенство 2 - тождество.
1)x=17 - 9y ; y є R
13 13
2) x=13 + 1y ; y є R
6 6
Объяснение:
3(5x+3y)-6=2x+11 4x-15=11-2(4x-y)
15x+9y-6=2x+11 4x-15=11-8x+2y
15x-2x=11-9y+6 4x+8x=11+2y+15
13x=17-9y 12x=26+2y
x=17 - 9y ; y є R x=13 + 1y ; y є R
13 13 6 6