57
Объяснение:
Докажем, что среди написанных чисел есть одинаковые.
Действительно, если все написанные числа разные, то различных
попарных сумм должно быть не менее четырёх, например, суммы
одного числа с четырьмя остальными. Значит, среди попарных сумм
есть суммы двух одинаковых натуральных чисел. Такая сумма
должна быть чётной, в нашем списке это число 80. Отсюда следует,
что на доске есть число 40 и оно написано не меньше двух раз.
Пар равных чисел, отличных от 40, на доске быть не может, иначе
среди попарных сумм было бы ещё одно чётное число. Обозначим одно из трёх оставшихся чисел через х, тогда среди
попарных сумм есть число 40 , + х значит, х равно либо 97 40 57, − =
либо 63 40 23. − =
Наборы 40, 40, 40, 40, 57 и 40, 40, 40, 40, 23 нам не подходят, так как
в них всего две попарные суммы. Значит на доске написан набор 40,
40, 40, 57, 23. Таким образом, наибольшее число на доске — это 57.
Объяснение:
У нас есть график y = 1/x.
1) Чтобы получить y = 1/(x-1), его нужно сдвинуть на 1 вправо.
Теперь вертикальная линия разрыва будет x = 1, а не x = 0.
Чтобы получить y = 4/(x-1), нужно все значения умножить на 4.
2) Точно также, сначала сдвигаем график y = 1/x на 2 влево, а потом переворачиваем график и умножаем все значения на 3.
3) Тоже, сначала сдвигаем график y = 1/x на 1 вправо, потом умножаем все значения на 2, и, наконец, сдвигаем весь график на 3 вверх.
1 график я нарисовал на рисунке, остальные делаются точно также.
Но это очень приблизительный график, точнее в Пайнте не построишь.
Главное, понятен порядок построения.