Положительные числа x и y таковы, что x+2y=6. Найдите наибольшее возможное значение выражения xy .
ответ: 4,5
Объяснение: Сразу можно применить неравенство Коши: Среднее геометрическое неотрицательных чисел меньше или равно среднему арифметическому этих чисел .
* * * √(ab) ≤ (a+b) / 2 ,если a≥ 0 и b ≥ 0 притом равенство (т.е. максимальное значение ab получается , если a=b * * *
В данном примере a = x > 0 , b =2y > 0
√(x*2y) ≤ ( x+2y) / 2 равенство выполняется, если x=2y.
Из x+2y=6 следует x =2y =3 иначе x =3 ; y =1,5.
max(x*y) = 3*(3/2) = 4,5 .
128*0,12=15,36
128-15,36=113
113*4=452
116*2=232
232+452=684
Объяснение:
0,12 ЭТО 12%