Сумму всех членов геометрической прогрессии можно найти в том случае, когда она является бесконечно убывающей, т.е. когда lql < 1.
1) √(5/2) = √2,5,
√2,5 > √1, q > 1, прогрессия бесконечно убывающей не является
2) √(3/2) = √1,5,
√1,5 > √1, q > 1, прогрессия бесконечно убывающей не является.
ни в одной из прогрессий сумму всех членов найти нельзя.
Если q = √5/2, то
√5/2 = √(5/4), √1,25 > √1, q > 1, прогрессия бесконечно убывающей не является.
Если q = √3/2, то
√3/2 = √(3/4), √0,75 < √1, q < 1, прогрессия является бесконечно убывающей. Сумму всех её членов найти можно по формуле:
S = b1 / (1 - q).
Объяснение:
{3х+4у=0 I * 2
{2х+3у=1 I * (-3)
{6x+8y=0
(+){-6x-9y=-3
------------------.
y=3 podstawiam do (1) równania 3x+4y=0
3x+4*3=0
3x=-12
x=-4
OTBET: rozwiązaniem ukladu równań jest para liczb:(-4 ; 3)