1) Ключевое слово - 7 одинаковых прямоугольников! Пусть одна сторона этих прямоугольников x, а другая y. У одного прямоугольника периметр P = 2(x + y) = 20 x + y = 10; x = 10 - y. Приставим прямоугольники друг к другу в цепочку сторонами x. Получим длинный прямоугольник с сторонами x и 7y P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100 10 + 6y = 50 6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3 Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20, а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых. Это и есть максимум.
(a₂+1) / (a₁+1) = (a₃+13) / (a₂+1) {Запись говорит о том что это геометрическая прогрессия q=q}
Дальше каждый член арифметической прогрессии расписываем:
a₂=a₁+d
a₃=a₁+2d
a₁+a₁+d+a₁+2d=24
3a₁+3d=24
3(a₁+d)=24
a₁+d=8 {Получили из первого уравнения}
(a₁+d+1) / (a₁+1) = (a₁+2d+13) / (a₁+d+1) {Получили из второго уравнения}
Решаем систему уравнений:
a₁=8-d
(8-d+d+1) / (8-d+1) = (8-d+2d+13) / (8-d+d+1)
9 / (9-d) =(21+d) / 9
(21+d)(9-d)=81
189+9d-21d-d²=81
-d²-12d+108=0
ответ: d₁ = -18; d₂ = 6
По условию арифметическая прогрессия возрастающая, следовательно d=6
Проверка:
Для арифметической:
a₁=2
a₂=8
a₃=14
∑=24
Для геометрической:
a₁=3
a₂=9
a₃=27
q=3