вот прочитай теорию
Линейная функция — это функция, которую можно задать формулой
y=kx+m , где x — независимая переменная, k и m — некоторые числа.
Применяя эту формулу, зная конкретное значение x , можно вычислить соответствующее значение y .
Пусть y=0,5x−2 .
Тогда:
если x=0 , то y=−2 ;
если x=2 , то y=−1 ;
если x=4 , то y=0 и т. д.
Обычно эти результаты оформляют в виде таблицы:
x 0 2 4
y −2 −1 0
x — независимая переменная (или аргумент),
y — зависимая переменная.
Графиком линейной функции y=kx+m является прямая.
Чтобы построить график данной функции, нам нужны координаты двух точек, принадлежащих графику функции.
Построим на координатной плоскости xOy точки (0;−2) и (4;0) и
проведём через них прямую.
lineara1.png
Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции.
Пример:
на складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2 ; 4 ; 10 дней?
Если пройдёт x дней, то количество y угля на складе (в тоннах) выразится формулой y=500+30x .
Таким образом, линейная функция y=30x+500 есть математическая модель ситуации.
При x=2 имеем y=560 ;
при x=4 имеем y=620 ;
при x=10 имеем y=800 и т. д.
Однако надо учитывать, что в этой ситуации x∈N .
Если линейную функцию y=kx+m надо рассматривать не при всех значениях x , а лишь для значений x из некоторого числового множества X , то пишут y=kx+m,x∈X .
Пример:
построить график линейной функции:
a) y=−2x+1,x∈[−3;2] ; b) y=−2x+1,x∈(−3;2) .
Составим таблицу значений функции:
x −3 2
y 7 −3
Построим на координатной плоскости xOy точки (−3;7) и (2;−3) и
проведём через них прямую.
Далее выделим отрезок, соединяющий построенные точки.
Этот отрезок и есть график линейной функции y=−2x+1,x∈[−3;2] .
Точки (−3 ; 7) и (2 ; −3) на рисунке отмечены тёмными кружочками.
lineara2.png
b) Во втором случае функция та же, только значения x=−3 и x=2 не рассматриваются, так как они не принадлежат интервалу (−3;2) .
Поэтому точки (−3 ; 7) и (2 ; −3) на рисунке отмечены светлыми кружочками.
lineara3.png
Рассматривая график линейной функции на отрезке, можно назвать наибольшее и наименьшее значения линейной функции.
В случае
a) y=−2x+1,x∈[−3;2] имеем, что yнаиб =7 и yнаим =−3 ;
b) y=−2x+1,x∈(−3;2) имеем, что ни наибольшего, ни наименьшего значений линейной функции нет, так как оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, исключены из рассмотрения.
В ходе построения графиков линейных функций можно как бы «подниматься в горку» или «спускаться с горки», т. е. линейная функция или возрастает, или убывает.
Если k>0 , то линейная функция y=kx+m возрастает;
если k<0 , то линейная функция y=kx+m убывает.
Объяснение:
№1
Пусть x-скорость лодки по течению, тогда y-скорость лодки против течения. Составим систему уравнений:
Домножим нижнее уравнение на -2
Решим методом сложения:
5x+2y-4x-2y=120-102
x=18
Подставим значение х во второе уравнение и найдем y:
2*18+y=51
36+y=51
y=51-36
y=15
Пусть скорость течения-x, а скорость лодки - y. Составим систему уравнений:
Решим методом сложения
x+y+y-x=32
2y=32
y=32/2
y=16
Подставим значение y в первое уравнение и найдем x:
x+16=18
x=18-16
x=2
ответ: скорость течения реки- 2км/ч. скорость лодки - 16 км/ч
№2
Пусть x- возраст отца, y-возраст сына
Выразим x из первого уравнения:
x/y=8
x=8y
Подставим значение x во второе уравнение:
8y+20/y+20=2
Перемножим методом креста:
2y+40=8y+20
-6y=-20
y=20/6
Выразим x:
x=8*20/6
x=80/3
Прибавим по 20 к x и y
x+20=80/3+20=140/3=46
y+20=20/6+20=140/6=23
ответ: Сыну 23 года, Отцу 46 лет.
Объяснение:
Объяснение:
q=b2/b1=3/6=1/2
S6=(b1*(q^6-1) )/ (q-1) = ( 6*( (1/2)^6 -1) ) / (1/2-1) = ( 6*(1/64-1) ) / (-1/2) =
= 6* ( -63/64) / (-1/2) = 12*63/64 = 3*63/16 = 11,8125