1)
.
ответ: В.
2)
![\dfrac{1}{3}\sqrt[3]{-147} \cdot \sqrt[3]{-63} = \dfrac{1}{3}\cdot (-\sqrt[3]{147})\cdot (-\sqrt[3]{63}) = \dfrac{1}{3}\sqrt[3]{147\cdot 63} = \dfrac{\sqrt[3]{9261}}{3} = \dfrac{21}{3} =\\\\\\= \boxed{\textbf{7}}](/tpl/images/1579/1990/aa741.png)
ответ: А.
3)

ответ: Г.
4)

ответ: А.
5)

ответ: А.
6)

Для начала решим систему неравенств, определяющую область допустимых значений
:

Возводим обе части уравнения в квадрат.

По теореме Виета:

3 не подходит под область допустимых значений.
ответ: корень только один, и он положительный.
7)

, тогда корень принадлежит промежутку
.
ответ:
.
8)

Областью определения функции является решение следующего неравенства:

Так как основание меньше единицы, то:
![2x - 1\leq 2\\\\2x \leq 3\\\\x \leq 1,5\ \ \ \ \Rightarrow \boxed{x\in(-\infty; 1,5]}](/tpl/images/1579/1990/c57f9.png)
ответ:
.
9)
Найдём область значения функции.
, тогда
. Значит,
. Следовательно, из перечисленных чисел в множество значений входит только 5 (4 не входит, так как концы не включаем).
ответ: 5.
10)
Условие чётности функции:
. Проверяем для каждой.
- не подходит.
- не подходит.
- подходит.
ответ:
.
Всего шаров 8.
Вероятность извлечь первым белый шар равна 3/8, остаётся 7 шаров из них 2 белых. Вероятность извлечь второй белый шар 2/7. Вероятность что первый и второй белые шары
Р₁=3/8*2/7=6/56=0,11
Аналогично находим что оба шара черные
Р₂=5/8*4/7=20/56=0,36
Вероятность что оба шара одного цвета (или оба белые или оба черные)
Р=Р₁+Р₂=0,11+0,36=0,47
Вероятность что первый белый, а второй черный
Р₃=3/8*5/7=15/56=0,27
Вероятность что первый черный, а второй белый
Р₄=5/8*3/7=15/56=0,27
Вероятность что шары разного цвета
Р=Р₃+Р₄=0,27+0,27=0,54
ответ: более вероятно событие в) - шары разных цветов
Объяснение:
2
6,400 • 10
Объяснение:
вроде бы так