Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
Вынесем коэф при x^2 f(x)=5(x^2-3/5x)+2 далее для того чтобы получить формулу a^2-2ab+b^2 в скобках добавим (3/(5*2))^2 и столько же вычтем получим: f(x)=5(x^2-3/5x+9/100-9/100)+2 далее преобразуем: f(x)=5((x-3/10)^2-9/100))+2 раскроем скобки: f(x)=5(x-3/10)^2-(9*5)/100+2 f(x)=5(x-3/10)^2-9/20+2 f(x)=5(x-3/10)^2+11/20
последняя строчка является ответом на ваш первый вопрос,о выделении полного квадрата.
ответ на второй вопрос не очень понятен. коэффиценты а,b и c можно узнать из самого трехчлена,то есть в вашем случае a=5,b=-3,c=2
выделени полного квадрата дает другой вид,а именно: f(x)=y,y=k(x-xo)+y0,то есть с выделения полного квадрата можно узнать нулевые точки вашей параболы.
как-то так. удачи с учебой)