Пусть весь путь - S. Скорость гркзовика - v(г). Скорость легкового автомобиля - v(a). Время затраченное грузовиком и легковым автомобилем на весь путь t(г) и t(a) соответственно. По условию t(a)=t(г)-1.
Найдём скорость автомобился и грузовика из формулы v=S/t: v(a)=S/t(a)=S/(t(г)-1) v(г)=S/t(г).
По условию сказано, что при движении навстречу друг другу они затратили 1 час и 12 минут, т.е. t(3)=1,2 ч. Так как они двигались на встречу друг к другу, то общая скорость v(o)=v(a)+v(г). Тогда весь путь равен S=v(o)t(3). Подставляем значение общей скорости: S=(v(a)+v(г))t(3) Подставляем значения скоростей, которые нашли ранее: S=(S/(t(г)-1) + S/t(г))×t(3) Выносим S за скобки и сокращаем: 1=(1/(t(г)-1) + 1/t(г))×t(3) Приводим всё к общему знаменателю внутри скобок и получаем уравнение: t(г)^2-3.4t(г)+1.2=0 Решая уравнение находим время которон затратил грузовик на весь путь t(г)=3ч. (Корень 0.4 не подойдет, т.к. тогда получится, что время автомобилч на дорогу отрицательно) Ну а время автомобиля на дорогу t(a)=3-1=2
Обозначим тупые углы трапеции как х. Так как меньшее основание и боковая сторона равны, то диагональ образует равнобедренный треугольник. Угол при вершине этого треугольника равен тупому углу трапеции, тоесть х. Обозначим углы при основании треугольника как у и выразим х через у: х=180-2у. Из условия известно, что диагональ образует с боковой стороной угол в 120 градусов, тоесть х=у+120. Теперь приравняем и решим полученное уравнение: 180-2у=у+120 => 3у=60 => у=20. Тогда тупой угол трапеции равен х=20+120=140 градусов. И в конце концов, можем найти острый угол трапеции: 180-140=40. ответ: углы трапеции 140 и 40 градусов
y=x2+4x-5=х=5/6
y=x2+4x-5=х=5/6