Весь объем работы (задание) = 1 Время , требуемое для выполнения работы самостоятельно: I комбайн х ч. II комбайн (х+5) ч. Производительность труда при работе самостоятельно: I комбайн 1/х объема работы в час II комбайн 1/(х+5) об.р./час Производительность труда при совместной работе: 1/х + 1/(х+5) = (х+5+х)/ х(х+5) = (2х+5)/(х² +5х) об.р./час Время работы совместно = 6 часов. Уравнение. 6 * [ (2х+5)/(х² +5х) )] = 1 x² +5x ≠ 0 ⇒ x≠0 ; х≠ -5 (2х +5) /(х² + 5х) = 1/6 1(х² +5х) = 6(2х +5) х² +5х = 12х + 30 х² + 5х - 12х - 30 = 0 x² - 7x - 30 = 0 D=(-7)² - 4*1*(-30) = 49 + 120= 169 = 13² D>0 два корня уравнения х₁= (7 - 13) /(2*1) = -6/2=-3 - не удовлетворяет условию задачи х₂ = (7+13)/2 = 20/2 = 10 (ч.) время , требуемое I комбайну , для выполнение объема работы самостоятельно.
Проверим: 10 + 5 = 15 (ч.) потребуется II комбайну для выполнения задания самостоятельно 6 * (1/10 + 1/15 ) = 6 * [ (3+2)/30 ] = 6 * 1/6 = 1 - всё задание выполнено за 6 часов.
ответ: за 10 часов может выполнить задание первый комбайн, работая один.
Дано: прямоугольный Δ
a; b - катеты
S=90 см²
S₁+S₂ = а²+b² =369 см₂
a-? b-?
Решение
1) Первое уравнение получаем из условия:
а²+b² = 369
2) Площадь прямоугольного треугольника равна половине произведения катетов, получаем второе уравнение:
3) Решаем систему: (a>0; b>0)
a≠0
Замена: а²=t ( t > 0)
Решаем уравнение:
t² - 369t + 32400 = 0
D = 369² - 4·1·32400 = 136161 - 129600 = 6561 = 81²
t₁ = (369-81)/2 = 144
t₂ = (369+81)/2 = 225
Обратная замена:
При t₁ = 144 => a² = 144 => a₁ = - √144 = - 12 < 0
a₂ = √144 = 12 > 0
При t₂ = 225 => a² = 225 => a₃ = - √225 = - 15 < 0
a₄ = √225 = 15 > 0
Зная а₁=12 и а₂ = 15, найдем b
b₁ = 180/12 = 15
b₂ = 180/15 = 12
Получаем два решения взаимозаменяемых:
а=12; b=15
а=15; b=12
ответ: 12 см; 15 см - катеты