Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
7x−10y=77x−10y=7
Из 1-го ур-ния выразим xx−2y=−12x−2y=−12
Перенесем слагаемое с переменной y из левой части в правую со сменой знакаx−2y+2y=−−1⋅2y−12x−2y+2y=−−1⋅2y−12
x=2y−12x=2y−12
Подставим найденное x в 2-е ур-ние7x−10y=77x−10y=7
Получим:−10y+7(2y−12)=7−10y+7(2y−12)=7
4y−84=74y−84=7
Перенесем свободное слагаемое -84 из левой части в правую со сменой знака4y=914y=91
4y=914y=91
Разделим обе части ур-ния на множитель при y4y4=9144y4=914
y=914y=914
Т.к.x=2y−12x=2y−12
тоx=−12+1824x=−12+1824
x=672x=672
ответ:x=672x=672
y=914