М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
leralagbibl
leralagbibl
30.11.2021 01:32 •  Алгебра

А) постройте график функции y=2x+4 б) задайте формулой линейную функцию,график которой проходит через начало и параллелен графику y=2x+4

👇
Открыть все ответы
Ответ:
Kotliarrostislav
Kotliarrostislav
30.11.2021

См. рисунок

1. Правильный шестиугольник, состоит из шести равносторонних треугольников.

Найдем сторону шестиугольника AB=r=48/6=8м.

Рассмотрим ΔСDO в нем CD=DO=0,5a (где а - сторона квадрата) ⇒ a=2CD

По теореме Пифагора найдем  СD

r²=CD²+DO²=2CD² ⇒ r=CD√2⇒CD=\frac{r}{\sqrt{2} }= \frac{8}{\sqrt{2}} м

a=2*\frac{8}{\sqrt{2}}=8\sqrt{2} м

2. Из задачи №1. мы убедились, что радиус описанной окружности равен стороне правильного шестиугольника.

Площадь правильного шестиугольника равна

S=\frac{3\sqrt{3}r^{2}}{2}

r=\sqrt{\frac{2S}{3\sqrt{3}}}=\sqrt{\frac{2*72\sqrt{3}}{3\sqrt{3}}}=\sqrt{48}=4 \sqrt{3} см

Длина окружности равна L=2πr=2π4√3=π*8√3≈43,5 см

3.  Площадь сектора равна

S=\pi r^{2} *\frac{n}{360}= \pi 12^{2} \frac{120}{360} =\pi \frac{144}{3}≈151 см²

(где n - градусная мера дуги сектора)


1) периметр правильного шестиугольника вписанного в окружность,равен 48м. найди сторону квадрата,впи
4,4(77 оценок)
Ответ:
AripovZ
AripovZ
30.11.2021

\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Объяснение:

Рассмотрим сначала первое неравенство системы.

Начнем с ОДЗ:

log_3^2x+10,\;=\;x0\\log_3x+30,\;x\dfrac{1}{27}\\x0\\x+5\ne0,\;=\;x\ne-5\\=x\in\left(\dfrac{1}{27};+\infty\right)

Продолжим решение:

\dfrac{lg(log_3^2x+1)-lg(log_3x+3)}{x+5}\ge0\\\dfrac{lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)}{x+5}\ge0

1)

lg\left(\dfrac{log_3^2x+1}{log_3x+3}\right)=0,\;=\;\dfrac{log_3^2x+1}{log_3x+3}=1\\\\=log_3^2x+1=log_3x+3,\;=\;log_3^2x-log_3x-2=0

Замена: t=log_3x.

t^2-t-2=0\\t^2+t-2t-2=0\\t(t+1)-2(t+1)=0\\(t+1)(t-2)=0\\t=-1\\t=2

Обратная замена:

log_3x=-1\\x=\dfrac{1}{3}\\\\log_3x=2\\x=9

С учетом ОДЗ оба корня подходят.

2)

x+5\ne0\\x\ne-5

С учетом ОДЗ получим, что решение неравенства:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)

Теперь перейдем ко второму неравенству системы:

Понятно, что сначала нужно написать ОДЗ.

0.5x0,\;=\;x0\\(0.5x)^{6^x}0,\;=\;x0\\=x0

Продолжим решение:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Заметим, что данное неравенство хорошо раскладывается на множители:

36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}

Решим неравенство по методу интервалов.

1)

\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}

2)

36-6^x-log_60.5x=0\\log_60.5x=-6^x+36

Введем функции f(x)=log_60.5x и g(x)=-6^x+36. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, log_61=-36+36,\;=\;0=0, верно. Так, мы решили это уравнение, получив, что его корень x=2.

Тогда решение неравенства с учетом ОДЗ:

x\in\left(\dfrac{1}{4};\;2\right)

Итого имеем:

x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)

Найдем пересечение:

x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]

Задание выполнено!

4,4(48 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ