А 111,6 км В
> (х + 1) км/ч t = 1,8 ч (х - 1) км/ч <
Пусть х км/ч - собственные скорости лодок (равные), тогда (х + 1) км/ч - скорость лодки, плывущей по течению реки, (х - 1) км/ч - скорость лодки, плывущей против течения реки; 111,6 : 1,8 = 62 км/ч - скорость сближения. Уравнение:
(х + 1) + (х - 1) = 62
х + 1 + х - 1 = 62
2х = 62
х = 62 : 2
х = 31 (км/ч) - собственная скорость лодки
(31 + 1) · 1,8 = 32 · 1,8 = 57,6 (км) - движение лодки по течению реки
(31 - 1) · 1,8 = 30 · 1,8 = 54 (км) - движение лодки против течения реки
ответ: 31 км/ч; 57,6 км; 54 км.
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение: