ответ: 7*√2/8.
Объяснение:
В данном случае уравнения фигур можно записать в явном виде:
y=x+1
y=-1-x²
Отсюда следует, что первая фигура является прямой, вторая - параболой. Пусть M1(x1,y1) и M2(x2,y2) - соответственно точки прямой и параболы, расстояние между которыми по сравнению с другими точками прямой и параболы является минимальным. Проведём через эти точки прямую L, длина отрезка которой между точками М1 и М2 и является искомым расстоянием. Эта прямая перпендикулярна как прямой y=x=1, так и касательной, проходящей через точку параболы M2. А тогда касательная параллельна прямой y=x+1. Отсюда следует, что угловой коэффициент касательной равен угловому коэффициенту прямой y=x+1, то есть 1. Но угловой коэффициент касательной равен значению производной функции y=-1-x² в точке M2. А так как y'=-2*x, то отсюда следует уравнение -2*x2=1. Отсюда x2=-1/2, и подставляя это значение в уравнение параболы, находим y2=-1-x2²=-5/4. Запишем теперь уравнение прямой L в виде y-y2=k*(x-x2). Так как прямая L перепендикулярна прямой y=x+1, то k=-1/1=-1, и тогда уравнение прямой L приобретает вид y+5/4=-1*(x+1/2), или 4*x+4*y+7=0. Так как точка М1 принадлежит обоим прямым, то её координаты удовлетворяют системе уравнений:
y1=x1+1
4*x1+4*y1+7=0
Решая её, находим x1=-11/8, y1=-3/8.
Теперь находим искомое расстояние r по формуле r=√[(x2-x1)²+(y2-y1)²]=√(98/64)=7*√2/8.
Замечание: решение можно сделать короче, если воспользоваться формулой r=/y2-k*x2-b/√(k²+1), где k=1 и b=1 - угловой коэффициент и свободный член в уравнении прямой y=x=1. Отсюда r=/-10/8+4/8-1/√2=7/(4*√2)=7*√2/8.
Пусть первый может выполнить работу за х дней, второй за у дней.
Тогда производительность первого (1/х), производительность второго (1/у).
(1/х)+(1/у) - совместная производительность.
1/((1/х)+(1/у)) = 4
или
(1/х)+(1/у)=1/4 - первое уравнение системы
(1/6)/(1/х) дней проработал первый.
(5/6)/(1/у)дней работал второй.
Всего 7 дней.
(1/6)/(1/х) +(5/6)/(1/у) = 7 - второе уравнение.
Система
{(1/х)+(1/у)=1/4 ⇒ 4·(x+y)=xy
{(1/6)/(1/х) +(5/6)/(1/у) = 7 ⇒ x+5y=42
{x=42-5y
{4·(42-5y+y)=(42-5y)·y ⇒ 5y²-58y+168=0 D=(-58)²-4·5·168=3364-3360=4
y=(58+2)/10=6 или у=(58-2)/10=5,6
х=42-5·6=12 или у=(42-5·5,6)=14
О т в е т. первый может выполнить работу за 12 дней, второй за 6 дней.
или первый может выполнить работу за 14 дней, второй за 5,6 дней.
Объяснение: