ΔАВС , АВ=13 , АС=11 , ВС=20
Наименьший угол в треугольнике лежит против наименьшей стороны,
то есть ∠В - наименьший, сторона АС=11 - наименьшая.
ВМ ⊥ пл. АВС ⇒ ВМ ⊥ любой прямой , лежащей в пл. АВС, в том числе и высоте треугольника ВН, ВН ⊥ АС.
Тогда по теореме о трёх перпендикулярах МН⊥АС (ВН - проекция МН на пл. АВС) ⇒ МН=24.
Найдём ВН , используя две формулы нахождения площади ΔАВС.
S(ABC)=1/2*АС*ВН ⇒ ВН=2S/АС .
Полупериметр р=1/2*(11+13+20)=22 ,
S=√p*(p-a)(p-b)(p-c)=√(22*11*9*2)=66 .
ВН=2*66/11=12 .
ΔВМН: ∠МВН=90° , ВМ=√(МН²-ВН²)=√(24²-12²)=√432=12√3
Чтобы найти значение а, зная корень уравнения, нужно вместо х подставить данное число, решить уравнение:
а) 5ах = 14 - х; при х = 4;
5а * 4 = 14 - 4;
20а = 10;
а = 10 / 20;
а = 0,5.
ответ: при а = 0,5 корень уравнения будет равняться 4.
б) (2а + 1) * х = - 6а + 2х + 13, при х = - 1;
(2а + 1) * (- 1) = - 6а + 2 * (- 1) + 13;
- 2а - 1 = - 6а - 2 + 13;
- 2а + 6а = 1 - 2 + 13;
4а = 12;
а = 12 / 4;
а = 3.
ответ: при а = 3 корень уравнения будет равняться - 1.
Чтобы найти значение b, зная корень уравнения, нужно вместо х подставить данное число и решить уравнение:
а) 4bx = 84, при х= - 3;
4b * (- 3) = 84;
- 12b = 84;
b = 84 / (- 12);
b = 7.
ответ: при b = 3 корень уравнения будет равняться - 3.
б) (b - 6)х = 6 + 5b, при х = 1;
(b - 6) * 1 = 6 + 5b;
b - 6 = 6 + 5b;
- 6 - 6 = 5b - b;
- 12 = 4b;
b = (- 12) / 4;
b = - 3.
ответ: при b = - 3 корень уравнения будет равняться 1.
надеюсь правильно
Объяснение: