М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Bloger1579
Bloger1579
26.09.2022 04:26 •  Алгебра

3. haйдите значение квадратичной функции у=(1 - x)(х + 5) призначен аргумента, равном 3. 4. найдите координаты вершин параболы у=3х^2- 12х + 1.5. решите квадратное неравенство 2х^2 - 3x + 1 6. постройте график функции у= х ^2+ 4х + 37. найдите для функции у=х^2+ 4х + 3а) область определения функции, 6) множество значений функции,а) наименьшее (наибольшее) значение функции, г) уравнение оси симметрии параболы, д) нули функциие) промежутки знакопостоянства функции, ж) промежутки монотонности функции.8. решите систему неравенств: x^2-3x-10> или =0, х^2+4х-12< 09. мяч бросили вертикально вверх с высоты 2 м с начальной ско-ростью 12 м/с. занасимость высоты h (м) подброшеного мячанад землей от времени t (c) полета выражается формулойh= -5t^2 + 12t +2. на какую максимальную высоту полиметсямяч? 10. найдите все значення числа а, при которых уравнение(а + 5)x^2 - (a + 6) + 3 = 0 не имеет корней ​

👇
Открыть все ответы
Ответ:
BrainSto
BrainSto
26.09.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Ответ:
проблемка4
проблемка4
26.09.2022

в случае комплексных чисел существование предела последовательности равносильно существованию пределов соответствующих последовательностей вещественных и мнимых частей комплексных чисел.

предел (числовой последовательности) — одно из основных понятий анализа. каждое вещественное
число может быть представлено как предел последовательности приближений к нужному значению. система счисления предоставляет такую последовательность уточнений. целые и рациональные числа описываются периодическими последовательностями приближений, в то время как иррациональные числа описываются
непериодическими последовательностями приближений. в численных методах, где используется представление чисел с конечным числом знаков, особую роль играет выбор системы приближений. критерием качества системы приближений является скорость сходимости. в этом отношении, оказываются эффективными
представления чисел в виде цепных дробей.

4,5(81 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ