ответ:
получи подарки и
стикеры в вк
нажми, чтобы узнать больше
августа 14: 23
найти все значения а при которых сумма квадратов корней уравнения х^2+(2-а)х-а-3=0 будет наименьшей
ответ или решение1
архипова вера
рассмотрим корни уравнения: х^2 + (2 - а) * х - (а-3) = 0, и применим теорему bиета:
х1 + х2 = -(2 - а); х1 * х2 = - а - 3.(1)
найдём искомые (х1² + х2²) = (х1 + х2)² - 2 * х1 * х2.
все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
объяснение:
сначала задача: примем за х первоначальную стоимость товара, после повышения цены на 10% товар стал стоить (1+0,1)x = 1,1x потом цена быласнижена на 10% тоесть стала 1,1x - 1,1x*0,1 = 1,1x -0,11x=0,99x
нам сказано что после снижения цены товар стал стоить 1089 рублей, то есть 0,99х = 1089 ; х=1089/99*100=1100 рублей.
ответ: первоначальная стоимость товара = 1100 рублей
Теперь уравнение: x^2+5x=0; решается путём выноса общего множителя за скобку, в данном случае общий множитель это х(икс),его и вынесем. и получим х(х+5)=0
произведение двух множителей = 0 тогда, когда хотябы 1 множитель = 0
то есть
х=0 или х+5=0
х=0 или х=-5
ответ: 0;-5