4^(x^2+x-4) - 0,5^(-2x^2-2x-1)/0,2*5^(x)-1 ≤ 0
Числитель = 4^(x^2+x-4) - 0,5^(-2x^2-2x-1) = 2^2(x^2+x-4) - 2^-1*(-2x^2-2x-1)=
=2^(2x^2 +2x -8) -2^(2x^2 +2x +1 ) = 2^(2x^2 +2x -8) (1 - 2^(-9)) .
2^(2x^2 +2x -8> 0 (при любом "х")
1-2^(-9) = 1 -1/512 > 0
Вывод: 2^(2x^2 +2x -8) (1 - 2^(-9)) > 0
В нашем неравенстве числитель положителен. Сама дробь ≤ 0. Значит, знаменатель должен быть < 0
0,2*5^x -1 < 0
5^-1*5^x -1 < 0
5^(x-1) -1 < 0
5^(x-1) < 1
5^(x-1) < 5^0
x -1 < 0
x < 1
ответ: х∈(-∞; 1)
Описание функции по ее графику.
Объяснение:
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.