Могу предложить следующее решение: Пусть х - скорость первого поезда, а у - скорость второго поезда, тогда первый поезд проехал весь путь за 270/х часов, а второй за 270/у часов, при этом он прибыл на 1ч 21 мин. (27/20) позже первого. Можно составить первое уравнение 270/y-270/x=27/20; 270(1/y-1/x)=27/20; 1/y-1/x=1/200 Поезда встретились через 3 часа, значит первый поезд до встречи ехал 3х км, а второй поезд ехал 3у км. Так как они двигались навстречу друг другу, то общее расстояние которое они проехали равно 270 км. Запишем второе уравнение 3х+3у=270 Можно 3 вынести за скобки: 3(х+у)=270; х+у=90 Составим систему 1/y-1/x=1/200 (x-y)/x*y=1/200 x-y=x*y/200 200(x-y)=x*y x+y=90 x=90-y x=90-y
200(90-y-y)=(90-y)*y 18000-400y=90y-y² y²-490y+18000=0 D=(-490)²-4*18000=240100-72000=410 y=(490-410)/2=40 y=(490+410)/2=450 Второй корень нам не подходит (слишком большая скорость), поэтому скорость второго поезда 40 км/ч, а второго х=90-40=50 км/ч.
1. < var > x^3y^34z^22y=8x^3y^4x^2 < /var ><var>x3y34z22y=8x3y4x2</var>
2. < var > -2x^60,5x^2y^3=-x^8y^3 < /var ><var>−2x60,5x2y3=−x8y3</var>
3. < var > (-5z^2y^3)^3=-125z^6y^9 < /var ><var>(−5z2y3)3=−125z6y9</var>
4. < var > -0,03ab^3=-0,03*(-4)*(-2)^3=0.96 < /var ><var>−0,03ab3=−0,03∗(−4)∗(−2)3=0.96</var>
5. < var > (18a^3b^2c)(\frac{1}{6}ab^3c^2)(-\frac{1}{3}a^2bc^3)=-a^6b^6c^6 < /var ><var>(18a3b2c)(61ab3c2)(−31a2bc3)=−a6b6c6</var>
Объяснение:
Рад