В множестве А - 101 элемент, в множестве В - 218 элементов. А∩В = 69, т.е. пересечение двух множеств даёт 69 элементов, другими словами они входят и в множество А и в множество В.
а) Чтобы узнать сколько элементов принадлежит А, но не принадлежит В, надо из множества А вычесть число элементов, которые принадлежат обоим множествам, т.е. А∩В. Итак, 101 - 69 = 32
б) Аналогично, если из множества В вычесть число элементов, принадлежащие А и В, т.е. А∩В, то получим количество элементов, которые принадлежат множеству В, но не принадлежат множеству А. Итак, 218 - 69 = 149
в) А∪В. Объединение множеств. Здесь суммируем количество элементов, которые принадлежат только множеству А, только множеству В и количество элементов, которые принадлежат обоим множествам: 32 + 149 + 69 = 250
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
33699(.336)99)6)6)6)6(9)