М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Masha1211111111
Masha1211111111
26.02.2022 17:52 •  Алгебра

-p(4+p)+(p-2)(p+2) при p=3/4

👇
Ответ:
den4ik143
den4ik143
26.02.2022

-7

Объяснение: -4р-р²+р²-4=-4р-4

подставляем, получаем -3-4=-7

4,8(80 оценок)
Открыть все ответы
Ответ:
ученик1877
ученик1877
26.02.2022
А)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится из 3 2 (2 - x) + x*(2 - x) = 4*(x - 2) в 3 2 (2 - x) + x*(2 - x) - 4*(x - 2) = 0 Раскроем выражение в уравнении-4*(x - 2) + x*(-x + 2)**2 + (-x + 2)**3Получаем квадратное уравнение 2 16 - 12*x + 2*x = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D x1, x2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 2b = -12c = 16, тоD = b^2 - 4 * a * c = (-12)^2 - 4 * (2) * (16) = 16Т.к. D > 0, то уравнение имеет два корня.x1 = (-b + sqrt(D)) / (2*a)x2 = (-b - sqrt(D)) / (2*a)x1 = 4x2 = 2

б)Перенесём правую часть уравнения влевую часть уравнения со знаком минус.Уравнение превратится изa*(a - 3) = 2*a - 6вa*(a - 3) + -2*a + 6 = 0Раскроем выражение в уравненииa*(a - 3) - 2*a + 6Получаем квадратное уравнение 2 6 + a - 3*a - 2*a = 0 Это уравнение вида a*x^2 + b*x + c.Квадратное уравнение можно решитьс дискриминанта.Корни квадратного уравнения: ___ - b ± \/ D a1, a2 = , 2*a где D = b^2 - 4*a*c - это дискриминант.Т.к.a = 1b = -5c = 6, тоD = b^2 - 4 * a * c = (-5)^2 - 4 * (1) * (6) = 1Т.к. D > 0, то уравнение имеет два корня.a1 = (-b + sqrt(D)) / (2*a)a2 = (-b - sqrt(D)) / (2*a)a1 = 3a2 = 2
4,5(87 оценок)
Ответ:
Tasher3tapora
Tasher3tapora
26.02.2022
Область определения функции х≠(π/2)+πk, k∈ Z.

На [-π/4;0]  таких точек нет, функция определена во всех точках            указанного отрезка.
Находим y`:
y`=(7/cos²x)-7.
Находим точки возможных экстремумов: точки, в которых производная обращается в 0 или не существует.
y` не существует в точках  (π/2)+πk, k∈ Z.
y`=0
(7/cos²x)-7=0;
(7-7cos²x)/cos²x=0;
7-7cos²x=0
7(1-cos²x)=0
7sin²x=0
sinx=0
x=πn, n∈ Z.
Указанному отрезку принадлежит одна точка х=0, но она является крайней правой точкой.
На [-π/4;0] y`=7sin²x/cos²x=7tg²x>0 ⇒ функция возрастает на указанном отрезке и наибольшее значение принимает в крайней правой точке,
 т. е.  при х=0.
у(0)=7·tg(0) - 7·0+5=5.
О т в е т.у= 5 - наибольшее значение функции на [-π/4;0]
4,7(96 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ