производная: 3x^2 + 16x + 16
приравняем к 0 - найдем точки экстремума
3x^2 + 16x + 16 = 0
D = 16*16 - 4*3*16 = 16*(16-12) = 16*4
x1 = (-16 + 8) / 6 = -4/3
x1 = (-16 - 8) / 6 = -4
3x^2 + 16x + 16 = 3*(x + 4/3)*(x + 4)
при x < -4 производная > 0
при -4 < x < -4/3 производная < 0 => точка x=-4 max
при x > -4/3 производная > 0 => точка x=-4/3 min
y(-4) = -64 + 128 - 64 + 23 = 23
и нужно еще проверить значение функции на границах отрезка:
y(-13) = можно не проверять - там функция возрастает и в x=-4 наступает max...
y(-3) = -27 + 72 - 48 + 23 = 20
ответ: наибольшее значение функции y(-4) = 23
Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d)
a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему:
{a1+a1+5d=11 a1+d+a1+3d=10
{2a1+5d=11 2a1+4d=10
Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым:
{-2a1-5d=-11 + 2a1+4d=10
-d=-1
d=1
2a1+4=10
a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.)
По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии:
S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n)
ответ:33