F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
2) Дайте определение функции, возрастающeй в промежутке; убывающей в промежутке. 3) Приведите примеры возрастающей и убывающей линейной функции? Сформулируйте и докажите соответствующее свойство линейной функции. 4) Как изменяется в каждом из промежутков (-∞; 0) и (0; +∞) функция y=k/x? Рассмотрите случаи k < 0 и k > 0.
1)графиком линейной функции и функции прямой пропорциональности является прямая. графиком функции обратной пропорциональности является гипербола. 2) Функция возрастает на промежутке если из того, что х1>x2 следует f(x1)>f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
Функция убывает на промежутке если из того, что х1>x2 следует f(x1)<f(x2), где х1 и х2 из области определения и принадлежат рассматриваемому промежутку.
3) если k(коэффицент) положительный, функция возрастает, если отрицательный - убывает. Например у=х возрастает, у=-х убывает.
4) если k<0, то функция возрастает если k>0, функция убывает.