Это неполное задание. Полностью оно звучит так: Функция f(x) задается системой: { f(x) = x + 3 ; при x < 0 { f(x) = (x - 1)(x - 3) ; при 0 < x < 5 { f(x) = -x + 13 ; при x > 5 При некотором k уравнение f(x) = k(x + 3) имеет ровно 3 корня. Решение. Прямая y = k(x + 3) проходит через точку (-3; 0). При любом k она будет пересекать две прямых, при x < 0 и при x > 5. При k = 1 она совпадает с прямой f(x) = x + 3, тогда уравнение имеет бесконечное количество корней. Ровно 3 корня будет, если эта прямая проходит через вершину параболы. M0(2; -1). Уравнение прямой через 2 точки: (x + 3) / (2 + 3) = (y - 0) / (-1 - 0) (x + 3)/5 = y/(-1) y = -1/5*(x + 3) k = -1/5
автубус | x+20 | 160/(x+20) | 160 |
поезд | x | 150/x | 150 |
По условию задачи на поезде они ехали на 30 минут=30/60ч=0,5ч
дольше
150/х -160/(х+20)=0,5 х(х+20)≠0
150(х+20) -160х=0,5х(х+20)
150х+3000-160x-0,5x^2-10x=0
-0,5x^2-20x+3000=0
D1=100+0,5*3000=100+1500=1600=40^2
x1=(10-40)/(-0,5=30/0,5=60
x2=(10+40)/(-0,5)=-100-посторонний.V>0
60км/ч-скорость поезда