М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Den4ik2008228
Den4ik2008228
08.02.2020 09:17 •  Алгебра

На отдельных карточках написаны числа от 1 до 10, каждое 1 раз. Саша наугад вытаскивает две карточки. Какова вероятность того, что сумма чисел на вытащенных карточках будет равна 14?

👇
Открыть все ответы
Ответ:
при любом значении b решите уравнение : 
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0

(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0  всегда  имеет  решения :
x₁  = (-3 b- 2 - b)/2 = -1 - 2b , если  -1 - 2b ≠ 1  и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂  = (- 3b - 2 +b)/2 = -1 - b , опять если  -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е.  если b ≠ -2 и b ≠ - 5.

 * * * * P.S.
Можно было  в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить  x =1 и x = 4 в качестве корней;
 
1)  1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ 
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .

b ≠ -5 ; -2,5 ;  -2 ; - 1.
4,4(64 оценок)
Ответ:
Марк2992
Марк2992
08.02.2020
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ