М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Engishmaster
Engishmaster
27.12.2022 09:18 •  Алгебра

Укажіть функцію, графіком якої є гіпербола.
А.у=8х
Б.у=8/х
В.у=х/8
Г.1/8х

👇
Ответ:
footbal32
footbal32
27.12.2022

Є вірним варіант Б) y=8/x

4,8(63 оценок)
Открыть все ответы
Ответ:
alenasweets230
alenasweets230
27.12.2022
При разрезании верёвочки длины 1 на   n \geq 2   равных частей
у кваждой будет длина   \frac{1}{n} \ .

Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е.   \frac{1}{n} \ ,   нужно разрезать верёвочку длины 2 на   2 : \frac{1}{n} = 2 \cdot \frac{n}{1} = 2 n \   частей.

Значит всего будет   n + 2n = 3n \   частей.

Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три.

Если предлагаются варианты ответов: 6, 8, 9, 12 или 15, то единственным подходящим вариантом будет 8, поскольку:

6 делится на три.
8 не делится на три! Таким число частей не могло оказаться!
9 делится на три.
12 делится на три.
15 делится на три.

О т в е т :  (б)  8 .
4,5(56 оценок)
Ответ:
fedrpopov5
fedrpopov5
27.12.2022
Из первого равенства очевидным образом следуют неравенства |x| \ \textless \ 1, |y| \ \textless \ 1
Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства |y| \ \textless \ 1 возвести в квадрат, получив, y^{2} \ \textless \ 1, что и требовалось проверить.

Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом:
x^{2} + y^{2} = 1 \\ (x+y)^{2} - 2xy = 1 \\ (x+y)^{2} = 1 + 2xy
Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и (x+y)^{2} \ \textgreater \ 1
Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y  > 1, что и требовалось доказать.

Последние два неравенства неверные. Сначала заметим, что из неравенства |x| \ \textless \ 1, |y| \ \textless \ 1, следует, что 0 <x < 1, 0 < y < 1
Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё.
Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
4,7(52 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ