Плохо без рисунка... Ну, давай словами. перпендикуляр выведен из середины большей стороны, его основание имеет в качестве ближайшей точку на диагонали. Нам надо найти расстояние до диагонали от основания перпендикуляра Диагональ по Пифагору равна (45^2+60^2)^(1/2) = 75 см Треугольники, образованные сторонами и диагональю первый и половиной большой стороны, перпендикуляром к диагонали и отрезком от вершины до перпендикуляра подобны. Коэффициент подобия равен 30 (половина большой стороны, она же гипотенуза малого треугольника) делённое на 75 (гипотенуза большого треугольника) = 2/5 Подобие есть, т.к. один угол общий, а второй угол - прямой. малый катет малого треугольника равен коэффициент подобия, умноженный на соответствующий катет большого треугольника d=2/5*45 = 18 cм Пока всё было в плоскости прямоугольника. Теперь переходим в перпендикулярную ей плоскость, в ней находится нормаль к стороне прямоугольника и перпендикуляр к диагонали из середины большей стороны Нормаль даёт большой катет прямоугольного треугольника, перпендикуляр - малый, а расстояние от точки на нормаль до диагонали - гипотенузу, равную по условию 30 x^2 + d^2 = 30^2 x = sqrt(30^2 - 18^2) = 24
Первое выражение - знаменатель не может быть равен 0, тк на 0 делить нельзя. Поэтому решаем уравнение (a+3)²=0 и получившееся значение переменной нужно будет исключить. Решаем: a²+6a+9=0 D=0, один корень: а=-6/2=-3 Теперь мы видим, что из множества всех значений этого выражения нужно "выбить" точку а=-3, потому что при этом значении переменной знаменатель =0⇒ выражение не имеет смысла. Следовательно, А-2 Так, рассуждаем дальше. Второе выражение: Знаменатель в данном случае не будет равен нулю никогда - подставим ли мы 0, 3 или -3 - не важно. Можно это проверить - решим уравнение а²+9=0 Получаем а²=-9. Любое число в квадрате не может быть отрицательным, поэтому это уравнение решений не имеет. Поэтому х в данном случае может быть любым числом. ответ - Б-3. И последнее выражение. Поступаем аналогично. (а+3)(3-а)=0 3²-а²=0 а²=9 а1=-3, а2=3, обе эти точки не входят в множество значений этого выражения, при них знаменатель будет нулевой, поэтому ответ В-4. Жду вопросов
4
Объяснение:
Фотография ниже