Пусть хкм/ч-скорость второго, тогда скорость первого равна х+10км/ч. Когда указывается, что тот или иной объект добрался до пункта назначения за какое-то время раньше или позже, необходимо от меньшей скорости, то есть хкм/ч, отнять большую. Расстояние S=560 км, скорость первого u=х+10км/ч, а скорость второго u=xкм/ч. Таким образом, составляем уравнение: 560/х -560/х+10=1. Решая это дробно-рациональное уравнение, получим квадратное уравнение х2+10х-5600=0, положительным корнем которого является число 2.5.ответ:2.5км/ч-скорость второго автомобиля, а скорость первого 12.5 км/ч.
скорость велосипедиста y км/ч .
A .C B (C - место встречи).
AC =(50/60) *x =(5/6)*x ; BC= (50/60) *y =(5/6)*y .
AB =AC +BC= (5/6) *(x + y). Вычислить время t = (5/6) *(x + y)/ y→?
((5/6)*x)/y - ((5/6)*y)/x =4 ⇔x/y -y/x =24/5. * * * 5 -1/5 * * *
(после встречи меняются путями ) ; замена x/y =z .
z -1/z =24/5 ⇔5z² -24z - 5 = 0 ⇒ z₁ =(12-13)/5= - 1/5 не решения задачи .
z₂ =(12+13)/5= 5 ⇒ x/y =5 ⇒(x+y)/y =6 .
t = (5/6) *(x + y)/y = (5/6)*6 = 5 (ч) .
ответ : Велосипедист на путь из B в A затратил 5 часов .