Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5
Давай разберем куб суммы
(a+b)³=a³+3a²b+3ab²+b³
Здесь везде плюсы, и запоминать знаки не надо
(3+2)³=3³+3×3²×2+3×3×2²+2³
при вычеслении будем изначально возводить в квадрат, а затем уже умножать и складывать
итак мы получаем
27+3×(9×2)+3×(3×4)+8
27+54+46+8
135
самое главное запомнить
1. Сначала возводишь числа в степень
2. Потом производишь умножение
3. В конце складываешь или вычитаешь
В разности кубов будет тоже самое только знаки другие (ну это ты сама знаешь)
главное степени знать какие