1. а) (а – 4)(а + 6)=а²+6а-4а-24=а²+2а-24;
б) (b – 2)(b²+ 3b – 10)=b³+3b²-10b-2b²-6b+20=b³+b²-16b+20;
в) (4х – у)(6х + 4у)=24х²+16ху-6ху-4у²=24х²+10ху-4у²;
4. Докажите тождество
(y – 5)(y + 7) = y(y + 2) – 35.
(y – 5)(y + 7) =у²+7у-5у-35=у²+2у-35= y(y + 2) – 35
из левой части получена правая. Тождество доказано.
5. Пусть ширина х см, тода длина (х+6) см, если ширину увеличить на 5, то она станет равной (х+5) см, если длину увеличить на 2, она станет (х+6+2)=(х+8) /см/, отсюда уравнение (х+5)*(х+8)=75+х*(х+6); х²+8х+5х+40=х²+6х+75; 7х=35, х=5
Значит. ширина равна 5 см, а длина 5+6=11/см/
Интервал возрастания функции:
x∈(0;5]
Интервал убывания функции:
x∈(-3;0]
Экстремум функции
(в соответствующее окно вводи целое число — положительное или отрицательное): f(0) = -1
Это: минимум функции
a) наибольшее значение функции f(-3 ) = 8
б) наименьшее значение функции f(0) = -1
a) функция положительна, если
x∈[−3;−1)∪(1;5]
б) функция отрицательна, если
x∈(−1;1)
Функция :
ни чётная, ни нечётная
Нули функции (выбери несколько вариантов ответов):
x=−1
x=1
a) точки пересечения с осью x (-1;0) и (1;0) (вводи координаты точек в возрастающей последовательности, не используй пробел);
б) точка пересечения с осью y (0;-1)
(вводи координаты точек, не используя пробел; у точек, у которых невозможно определить точные координаты, вводи приближенные значения до двух цифр после запятой).
привет, из интернетУрока)))
Объяснение: