1)ОДЗ х2-1 не =0, т.е. (х-1) не =0 и (х+1) не=0, т.е. х не =+-1
Дробь=0, когда числитель=0,т.е. х2-3х+2=0
D=9-8-1, х1=(3+1)/2 х1=2, х2=(3-1)/2 х2=1 этот корень не входит в ОДЗ
ответ: х=2
2) х2-4х+3=0
Д=16-12=4
х1=(4+2)/2 х1=3
х2=(4-2)/2 х2=1
х2+9х=0
х(х+9)=0
х1=0 х2=-9
7х2-х-8=0
Д=1+4*7*8=225
х1=(1+15)/14 х1=1 1/7
х2=(1-15)/14 х2=-1
2х2-50=0
2(х2-25)=0
(х-5)*(х+5)=0
х1=5 х2=-5
3) у2-9у-2=0, ведь это числитель дроби, у которой знаменатель7? Тогда решаем так:
Д=81+8=89
у1=(9+корень из 89)/2
у1=(9-корень из 89)/2
Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7