(см. объяснение)
Объяснение:
Заметим, что . Пусть
. Тогда из первой строки получим, что
. Подставив это во вторую строку системы, получим
. Тогда получим систему, которая будет состоять из строк
и
. Решая две полученные системы уравнений, находим, что исходная система уравнений имеет две пары решений вида
. Тогда окончательным ответом с учетом ОДЗ будет:
или
.
Система уравнений решена!
Комментарий-1:
При решении несложно было заметить, что из второй строки системы следует, что y=5x.
Комментарий-2:
При выполнении замены, можно было указать, что 6x+y=t и проделать аналогичную в решении работу.
x²-2xy+y²-4y²=0
(x-y)² - (2y)² =0
(x-y-2y)(x-y+2y)=0
(x-3y)(x+y)=0
x-3y=0 x+y=0
x=3y x= -y
При x=3y:
(3y)²-3y*y-2*3y-3y=6
9y²-3y²-6y-3y=6
6y²-9y-6=0
2y²-3y-2=0
D=3²-4*2*(-2)=9+16=25
y₁=(3-5)/4=-0.5 x₁=3*(-0.5)=-1.5
y₂=(3+5)/4=2 x₂=3*2=6
При x=-y:
(-y)² - (-y)*y - 2*(-y) -3y=6
y²+y²+2y-3y-6=0
2y²-y-6=0
D=1-4*2*(-6)=1+48=49
y₁=(1-7)/4=-1.5 x₁=-(-1.5)=1.5
y₂=(1+7)/4=2 x₂=-2
ответ: (-2; 2); (-1.5; -0.5); (1.5; -1.5); (6; 2).