1.Угловой коэффициент данной прямой к=1, угловой коэффициент искомой касательной равен f'(x₀), где х₀-абсцисса точки касания. Т.к. искомая касательная и данная прямая параллельны, то их угловые коэффициенты равны. f'(x₀)=1;
2. f'(x)=2х-3; Тогда 2х₀ - 3=1, откуда х₀=4/2=2; Итак, на графике функции существует точка с абсциссой х₀=2 , касательная в которой параллельна данной прямой.
При х₀=2 имеем f(x₀)=2²- 3*2+2=4-6+2=0; .
Общий вид уравнения касательной, проходящей через точку с абсциссой х₀, такой у=f(x₀)+f'(x₀)(x-x₀); Подставим все необходимое в формулу, получим
у=0+1*(х-2); у=х-2 -искомое уравнение касательной.
ответ у=х-2
Перевести десятичные дроби в обыкновенные.
1) 0,7
Читаем: «Нуль целых, семь десятых». Нуль в целой части обыкновенных дробей не пишут, остается семь десятых. Так и пишем:
\[0,7 = \frac{7}{{10}}\]
Или: нуль целых не пишем. В числитель ставим 7, в знаменатель — 10, потому что после запятой стоит одна цифра.
2) 2,53
Читаем: «Две целых, пятьдесят три сотых». Как слышим, так и пишем:
\[2,53 = 2\frac{{53}}{{100}}\]
Или: 2 целых, в числитель пишем 53, а в знаменатель — 100, потому что после запятой стоят две цифры.
3) 14, 406
Читаем: «Четырнадцать целых, четыреста шесть тысячных». Как слышим, так и пишем:
\[14,406 = 14\frac{{406}}{{1000}}\]
Или: 14 целых, в числитель пишем 406, а в знаменатель — 1000, потому что после запятой стоят три цифры.
4) 30,00208
Читаем: «Тридцать целых, двести восемь стотысячных». Как слышим, так и пишем:
\[30,00208 = 30\frac{{208}}{{100000}}\]
Или: 30 целых, в числитель пишем 208, а в знаменатель — 100000, потому что после запятой — пять цифр.