Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится число 10Y + X и отношение полученного числа к N равно 3,4, т.е. 10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY 10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4 10Y + X = 34X + 3,4Y 10Y - 3,4Y= 34X - X 6,6Y = 33X 6,6Y = 33X X = 0,2Y подставим Х в первое уравнение 10* 0,2Y + Y = 3Y*0,2Y 2Y + Y = 0,6Y^2 0,6Y^2 - 3Y = 0 Y( 0,6Y - 3) = 0 Y = 0 или 0,6Y - 3 =0 0,6Y = 3 Y = 5
если Y = 0 то Х =0 ( не подходит) если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)