X - скорость течения реки, она же - скорость движения плота.
Тогда по условию скорость катера:
- в стоячей воде - 4X,
- при движении против течения - 4Х-Х=3Х,
- при движении по течению - 4Х+Х=5Х.
Скорость сближения при движении плота и катера навстречу друг другу
- Х+3Х.
Если принять расстояние между пунктами за единицу, то время движения до встречи
t1=1/(Х+3Х)=1/4Х.
За это время плот пройдет расстояние
S1п=Х*t1=X*(1/4Х)=1/4.
Соответственно катер пройдет расстояние
S1к = 1- 1/4 =3/4.
Время движения катера на обратный путь до пункта B
t2=(3/4)/(5Х)=3/20Х.
За это время плот пройдет расстояние
S2п=Х*t2=X*(3/20Х)=3/20.
Общее расстояние, пройденное плотом
S=S1п+S2п=1/4 +3/20 =2/5.
Если ещё не изучено понятие производной, то решение может быть таким:
1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.