Дана функция
Производная её равна: y' = (3x^2*x^2 - 2x*(x^3 + 4))/x^4 = (x^3 - 8)/x^3.
Приравняем её нулю ( при х не равном 0 можно только числитель).
x^3 - 8 = 0.
x^3 = 8, х = ∛8 = 2. Это критическая точка.
С учётом разрыва функции при х = 0 имеем 3 промежутка монотонности функции: (-∞; 0), (0; 2) и (2; +∞).
На промежутках находим знаки производной.
Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -1 0 1 2 3
y' = 9 - -7 0 0,7037.
• Минимум функции в точке: х = 2, у = 3.
• Максимума функции нет.
• Возрастает на промежутках: (-∞; 0) U (2; ∞).
• Убывает на промежутке: (0; 2).
2.ответ:х -количество облигаций по 2000руб,
у - количество облигаций по 3000руб,
2000х -стоимость х облигаций по 2000руб,
3000у -стоимость у облигаций по 3000руб
Уравнения:
х + у = 8
2000х + 3000у = 19000
Из 1-го уравнения:
у = 8 - х
Подставляем во 2-е уравнение
2000х + 3000(8 - х) = 19000
2000х + 24000 - 3000х = 19000
1000х = 5000
х = 5
у = 8 - х = 8 - 5 = 3
ответ: облигаций по 2000руб было 5, а облигаций по 3000 руб было 3.
1.4х + у = 3 умножаем все уравнение на 6
6х - 2у = 1 умножаем все уравнение на 4
24х + 6у = 18
24х - 8у = 4
вычитаем из первого уравнения второе
0х + 14у = 14
14у = 14
у = 1
4х + 1 = 3
4х = 2
х = 0,5
4.т.к. А(3;8), значит, в этой точке x=3, y=8
т.к. В(-4;1), значит, в этой точке x=-4, y=1
Составляем систему:
Умножаем второе уравнение на (-1):
Складываем:
k=1
Выражаем из второго уравнения b:
b=4k+1
Подставляем k:
b=4*1+1
b=5
Подставляем k и b в уравнение прямой у=kx+b:
y=x+5